
Mickey Stuewe
Data Architect

Microsoft Junkie

Red Gate Addict

Changing Your Habits To 

Improve the Performance 
of Your T-SQL



Objectives

 Formatting T-SQL for Readability

 How to Add Unique Information to Generic Templates 

 Why Top Down Design Is Not The Best Choice For T-SQL

 Predicates and Set Theory

 Implicit Conversions

 Temp Tables vs Table Variables vs Materialized Tables

 User Defined Functions 

 Cursors

 SELECT * IS BAD

3



Formatting T-SQL for readability

 Includes comments, author, and brief audit trail

 Be consistent

 The best formatting pattern is the one that is followed by the entire 

team

4



My Formatting Preferences

 Spell words out

 Indent each sub query

 No spaces or special characters in names

 No reserved words as field or table names

 Be consistent when naming fields

 Use capitalization

 Comment, comment, comment

 Remove old code

5



Educating the Whole Team

 Provide a “living” document that contains the standards

6



Educating the Whole Team

 Email the whole team information each week

 Important blog posts

 New templates

 Areas that need improvement

 Provide templates

7



How to Add Unique Information to Generic Templates

8Show me the code! Demo 00

 Create and share a catalog of templates.

 Standardize code

 Easily access standard patterns you have accumulated.

 Use SSMS template parameters (dynamic information)

 <Field Name, Data Type, Default Value>

 CTRL + SHIFT + m



Why Top Down Design Is Not The Best Choice

 The optimizer can’t pick the best 

execution plan if the stored procedure is 

broken up into many parts

 Data is usually not narrowed quick 

enough

 T-SQL is built to leverage Set Theory

9

1

2

3



Predicates and Set Theory

 Deterministic vs Nondeterministic Functions

Deterministic function always returns the same result

 Like

 AND and OR

 UNION and UNION ALL

 Example on Mickeystuewe.com: Using Set Theory 

Instead of ISNULL To Filter Data

10

Deterministic Nondeterministic

LEFT GETDATE()

LEN LEAD

DataLength ROW_NUMBER()

CONVERT CONVERT



Implicit Conversions

11

The optimizer chooses the data type based on a predefined list.

Data Type Precedence: http://technet.microsoft.com/en-us/library/ms190309.aspx



Implicit Conversions

The optimizer chooses the data type based on a predefined list.

Data Type Precedence: http://technet.microsoft.com/en-us/library/ms190309.aspx

 Data types matter

 You may not get what you expect

 Implicit conversions can be costly

12Show me the code! Demo 01



Temp Tables

 Stored temporarily 

in temp.db

Materialized Tables

 Stored Permanently 

in database

13

Table Variables

 Stored temporarily 

in temp.db

Temp Tables vs Table Variables vs 

Materialized tables



Temp Tables

 Stored temporarily 

in temp.db

 Can be indexed

Materialized Tables

 Stored Permanently 

in database

 Can be indexed

14

Table Variables

 Stored temporarily 

in temp.db

 Can be indexed

Temp Tables vs Table Variables vs 

Materialized tables



Temp Tables

 Stored temporarily 

in temp.db

 Can be indexed

 Each person has 

their own copy

Materialized Tables

 Stored Permanently 

in database

 Can be indexed

 Multiple users can 

overwrite each 

others data

15

Table Variables

 Stored temporarily 

in temp.db

 Can be indexed

 Each person has 

their own copy

Temp Tables vs Table Variables vs 

Materialized tables



Temp Tables

 Stored temporarily 

in temp.db

 Can be indexed

 Each person has 

their own copy

 Estimates are based 

on N rows

Materialized Tables

 Stored Permanently 

in database

 Can be indexed

 Multiple users can 

overwrite each 

others data

 Estimates are based 

on N rows

16

Table Variables

 Stored temporarily 

in temp.db

 Can be indexed

 Each person has 

their own copy

 Estimates are based 

on ONE row

Temp Tables vs Table Variables vs 

Materialized tables



Temp Tables

 Good for use in 

stored procedures 

and transient data

Materialized Tables

 Good for single 

process work such 

as staging data to 

be moved to a data 

warehouse

17

Table Variables

 Good for really 

small datasets

Show me the code! Demo 02

Temp Tables vs Table Variables vs 

Materialized tables



The Good

 Scalar functions encapsulate 

common Functionality and 

returns one value

The Ugly

 Repeated for EVERY row

(1 million rows becomes 1 

million executions)

18

User Defined Functions (UDF)



The Good

 Scalar functions encapsulate 

common Functionality and 

returns one value

 Multi-line Table Functions 

returns a table-valued table that 

can be joined to

The Ugly

 Repeated for EVERY row

(1 million rows becomes 1 

million executions)

 Optimizer only sees one row 

being returned for a Multi-line 

Table Function

19

User Defined Functions (UDF)



The Good

 Scalar functions encapsulate 

common Functionality and 

returns one value

 Multi-line Table Functions 

returns a table-valued table that 

can be joined to

 In-line Table Functions returns a 

table (think “temp table”) that 

can be joined to

The Ugly

 Repeated for EVERY row

(1 million rows becomes 1 

million executions)

 Optimizer only sees one row 

being returned for a Multi-line 

Table Function

 Not the answer to everything, 

sub queries may be faster

20Show me the code! Demo 03

User Defined Functions (UDF)



Cursors

 Execute code for every loop

 Cursors

 While Loops

 Scalar Functions

21

Rows to Process 30,000

Iterations 40

Rows Processed 1,200,000

Rows to Process 30,000

1 Scalar function 

accessing 100 rows 

per function call

100

Rows Processed 3,000,000



Cursors

 Execute code for every loop

 Cursors

 While Loops

 Scalar Functions

Other Options…

 Common Table Expressions (CTE)

 In-line Table Functions with CROSS 

APPLY

22

Rows to Process 30,000

Iterations 40

Rows Processed 1,200,000

Rows to Process 30,000

1 Scalar function 

accessing 100 rows 

per function call

100

Rows Processed 3,000,000

Show me the code! Demo 04



SELECT * IS BAD

 Will return different data if the table or view DDL changes

 Returns different field names if the table or view DDL changes

 Returns more data than is actually needed

 Can lead to a poor execution plan.

23Show me the code! Demo 05



Objectives

 Formatting T-SQL for Readability

 How to Add Unique Information to Generic Templates 

 Why top down design is not the best choice for T-SQL

 Predicates and Set Theory

 Implicit Conversions

 Temp Tables vs Table Variables vs Materialized Tables

 User Defined Functions 

 Cursors

 SELECT * IS BAD

24



Questions

25



26

Presentation

www.MickeyStuewe.com/Resources

Contact

Mickey@MickeyStuewe.com

Twitter: @SQLMickey

Online

MickeyStuewe.com

Bigpass.sqlpass.org

Book

SQL Server 2012 Reporting 

Services Blueprints

Awards

Tribal Awards 2013 by Red Gate:

Best New Community Voice


